
sections 1-2 and 3-4 of the pipeline (see Fig. i); c, mass concentration of solution; h, 
head loss in converging section, mm H20 gage; Ah1_ 2 and Aha_~, head losses in sections 1-2 
and 3-4, respectively; ~D, ~d and v D, v d, corrections for the kinetic energy and mean veloc- 
ity of the flow in the pipe sections of diameters D and d; g, acceleration of free fall; 
Re = vdd/u, Reynolds number; ~,. kinematic viscosity; %, hydraulic friction coefficient for 
pipe; ~, resistance coefficient of converging section; ~B, ~v, resistance coefficients during 
the flow of water and of aqueous PAA solution; ~r = 100%, (~B - ~)/r relative change in 
the coefficient ~ caused by the introduction of the PAA additive to the stream under other- 
wise equal flow conditions. 

i. L 
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CONJUGATE HEAT TRANSFER IN THE LAMINAR FLOW OF 

A SWIRLED INCOMPRESSIBLE FLUID IN A HORIZONTAL 

ANNULAR DUCT 

V. I. Bubnovich and P. M. Kolesnikov UDC 536.242:532.542.2 

The heat transfer associated with swirled flow of a heat-transfer medium in a 
semi-infinite annular duct is analyzed numerically. The walls of the duct have 
a finite thickness and exert a significant influence on the formation of the 
temperature fields in the fluid. 

The swirling of flow in ducts, annular ducts in particular, is widely employed in engi- 
neering as an effective means of intensifying heat- and mass-transfer processes, stabilizing 
plasmas and flames, and protecting the walls of equipment against high-temperature and chem- 
ically aggressive flows. The types of swirled flow are extremely diverse: completely and 
partially swirled flows, flows with local and constant swirling along the length (ducts fit- 
ted with augers, helical liners and windings, etc.), flows in septate and conical ducts, 
etc. A detailed classification of the types of swirled flows is given in two recently pub- 
lished books [i, 2]. 

The influence of flow rotation on the velocity distribution in an annular duct and the 
onset of zones of flow separation from the inner wall have been investigated [3-5] over a 
wide range of swirling factors, Reynolds numbers, and thicknesses of the annular space. The 
specific characteristics of the intensification of convective heat transfer by swirled flow 
of a heat-transfer medium in an annular duct are discussed in [6, 7]. The main experimental 
and theoretical results on the hydrodynamics and heat transfer of swirled flows in axisym- 
metrical ducts are generalized in [2]. 

Lately a growing importance has been placed on the solution of both the inner and outer 
problems of convective heat transfer in the conjugate setting: in general, the temperature 
fields in the duct walls and in the fluid flow are highly interdependent, and appreciable 
errors can arise in thermal calculations if this coupling is ignored. Data from investiga- 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian 
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. 5, pp. 713-720, 
November, 1989. Original article submitted May 7, 1988. 

1270 0022-0841/89/5705-1270512.50 �9 1990 Plenum Publishing Corporation 



tions of the influence of the thickness and thermal conductivity of the duct walls on con- 
vective heat transfer by the swirled flow of a heat-transfer medium have not been published 
to date. 

Here we consider the unsteady laminar flow of an incompressible fluid in a straight 
annular duct with flow swirling at the inlet. We assume that the flow is rotationally sym- 
metrical, external body forces are absent, and the density p and dynamic viscosity coeffic- 
ient D are constant. In cylindrical coordinates the dimensionless Navier-Stokes equa=ions 
for such a flow have the form [4] 

av v au 
Or + ~ + -  = o ,  r Oz 

Ov Ov Ov oJ~ 8 P 

at + v-~r + u = - - - -  Oz r pot 

au Ou au - -  ap 
o--t- + v G -  + . ~  = ~ Oz pOz 

ao~ &o am ve 
,at- + v--y; + u - G - z + - -  t" 

I ' ) 
+ -~e [v~v-- v 

y2 

+ -~e  v2u' 

- =  _ [ V ~  ~ _ _  (o 

i~e ~ r~ } 

(i) 

The heat transfer in the fluid flow and in the duct walls is described by the system cf dif- 
ferential equations 

OF2 8T2 OT----t+v - i - u - -  = -  
at Or az 

The i n i t i a l  and  b o u n d a r y  c o n d i t i o n s  a r e :  

T ~ = T ~ = u = v = ~ = O  at 

1 V2T2 ' 8T1 __ a v2T1" ( 2 )  
Pe 8t Pe 

t ~ O ;  1 > 0 :  T I = T 2 = v = O ,  

8u Ov O~ 8T1 8T~ 

az Oz 8z 8z Oz 
u = Uo (r), o) = ~o (r) at z = O, - - 0  

at Z -~ L, u = v = o~ = O, T1 = T2, k OT2 _ 8T1 at r = R ,  r=Rq-1, (3) 
ar Or 

aT1  - 0 a t  ,r : R--c ,  8T1 : B i ( 1 - - T , )  a t r  = R + I ' @  c, 
8r 8r 

where R = RI/(R2 - Rz) and c is the thickness of the duct walls. 

Boundary conditions for the pressure are not formulated, because we eventually e!Lmi- 
hate the pressure from the system of equations (I). Everything is set equal to zero in the 
initial conditions. The following parameters, on which the solution of the stated problem 
depends, are adopted: the dimensionless radius R of the inner cylinder, the dimensionJ_ess 
thickness c of the duct walls, the Reynolds number Re, the Peclet number Pc, the dimension- 
less length L of the duct, the axial and azimuthal velocity profiles U 0 and W 0 at the Lnlet, 
the ratio a = az/a 2 of the thermal diffusivities of the duct walls and the fluid, and the 
ratio X = X2/Az of the thermal conductivities of the fluid and the duct walls. We use a 
Poiseuille profile for U 0 and assume that the radial variation of the azimuthal velocity 
component at the duct inlet obeys the rigid-body law 

Wo ~ Kor. 

To characterize the quantitative relation between the axial velocity u and the azimu- 
thal velocity e in the duct cross section, we define the quantity K by the expression 

R+I R+I 

t" [.t" 
R 

The objective of the study is to determine the dependence of the solution of the sys- 
tem of equations (i), (2) subject to the boundary conditions (3) on the parameters K0, ~, 
and c for large values of L. 

The introduction of the stream function ~ and the azimuthal component of the vorticity 
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1 0 ~  1 b t = - - - - ,  0 . . . .  
r Or r 

reduces the system of equations (i) to the form 

0~ 0~ ~v 1 
0---[ "~r ' Oz r r 

0 ~ ,  ~ _  0v  0.  
Oz Oz Or 

Oz V2~ ' 

Oo)ot OrO~ tt OO30z vo) 1 ( ( o )  + v - -  + + - - -  Vi~ - , 
r Re fz 

= - -  0--7 , r Oz a 

The b o u n d a r y  c o n d i t i o n s  f o r  t h e  f u n c t i o n s  ~ and $ a r e  o b t a i n e d  f rom c o n d i t i o n s  (3 )  and h a v e  
the form 

OU~ at  z = 0 ,  O~ = 0~ = 0  a t  z =L, 
= ,  Uo(r) rdr, ~--  Or Oz Oz 

R 

R+I 09 
0~ = 0 a t  r -=  R, ~ ~- j" Uo(r)rdr = 1, ==0 at  r=R-t-1. 
Or R Or 

(4) 

(5) 

(6) 

(7) 

The vorticity boundary problems deserve special attention. The problem is that the 
values of the function $ (or its derivatives) at the boundaries of the domain must be speci- 
fied in order to solve the vorticity equation (4) numerically. On the other hand, the 
boundary conditions (7) do not contain any information in explicit form on the function ~ at 
the duct walls, where the no-slip condition must hold: 

a~[ = o. (s )  
Or I 

Numerical methods for the solution of the incompressible fluid equations do not permit this 
condition to be used directly. It is therefore necessary to derive equations that describe 
the vorticity function and satisfy condition (8). This is accomplished by introducing in- 
ternal iterations with respect to the time step At for the function $ at the boundary. The 
simultaneous solution of Eqs. (4) and (6) in one time step proceeds as follows in this case 
[8, 9]. An alternating-direction procedure is first used to solve the vorticity equation 
(the values of the vorticity at the walls are taken from the preceding iteration layer) and 
the Poisson equation in succession. The values of the stream 'function at nodes situated one 
step from the boundary of the physical domain are then adjusted for nonslip by any one-sided 
formula for the derivative (8), e.g. [I0]: 

Orlr ' 2Ar 

The v a l u e s  o f  t h e  v o r t i c i t y  a r e  c o r r e c t e d  a t  t h e  same n o d e s  a c c o r d i n g  t o  Eq. ( 6 ) ,  and t h e  
v a l u e s  o f  t h i s  q u a n t i t y  a t  t h e  b o u n d a r y  o f  t h e  domain a r e  d e t e r m i n e d  f rom t h e  u n s t e a d y  e q u a -  
t i o n  (4 )  e x p r e s s e d  a t  n e a r - b o u n d a r y  n o d e s .  The f i n a l  v a l u e s  o f  t h e  v o r t i c i t y  a t  t h e  bound-  
a r y  a r e  d e t e r m i n e d  f rom t h e  r e l a t i o n  

= d0 ~-Y~0'  - -  , 

in which n is the number of the time layer, k is the iteration number, and ~ is a relaxa- 
tion parameter, which affects only the rate of convergence of the iterative process and is 
taken equal to 0.5 in the majority of situations. The iterative process is terminated when, 
e.g., the following relation is satisfied: 

I~ 'h - -  ~ ' k - l l / l ~ ' ~ l  ~ 10- ' .  

The system of equations (2), (4)-(6) subject to the initial and boundary conditions 
(3), (7) has been solved numerically by an implicit finite-difference scheme using an al- 
ternating-direction procedure [i0]. Clearly, if we introduce the fictitious time T and 
transform Eq. (6) to the parabolic-type equation 

0~ 0 ( +  0 ~ )  1 0 Z ~  _ ~ ,  (9 )  

Ox Or _ "ff-/-r. r Oz z 

all five equations of the basic system will have a similar structure, so that a unified 
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method and computational algorithm can be used to solve them. Accordingly, we give the 
finite-difference analog of the equation for the energy in the fluid and omit the finite- 
difference representations of all other equations of the system, since they can be written 
by analogy with the following: 

T~:- Ti: Tii- Tii ~ Ti:+~- Tu 
At~2 + (vii @ Iv/::) 2At:_ 1 - + (vu --lvul) 2A O + 

Ti:- Tio_ i: "u Ti+u- : __ + - -  ( + lu.I) " Tutus: lulil) = 

2Azi_~ 2Azi 

1 
r j + l  ,) 

Pc r ~hr~ hr ihr :_ ~ 

Ar @ (vii q- Iviil) 2At:_1 

~ T~+Ii--Tij L i - -  TL_Ij] 

Az~ Az~Az~_l ' 
^ ^ 

( v i i -  IvuI) T i i ~  Ti: + + 
zLw : 

- - L j  

- 

= r:+l ~ Az[  az~az~_~ j Pe rjAr7 hrjhri-1 ~ , (10)  

where  T = T n+1f2 and T = T n + l .  E q u a t i o n s  (10)  a r e  s o l v e d  in  e a c h  d i r e c t i o n  r and z b3 t h e  
w e l l - k n o w n  t r i d i a g o n a l  i n v e r s i o n  method  [ 1 1 ] .  

The t e m p e r a t u r e  m a t c h i n g  c o n d i t i o n s  a t  t h e  i n n e r  and o u t e r  c y l i n d e r s  a r e  t r a n s f o r m e d  
into the respective finite-difference equations 

Tliy = T~ij, T~i 7 -  Tlij_ 1 : ~ T2U+I -- T~,: at r : ~, 
Ar:_~ Ar~ 

r1~i = Z2ii, L T~i]-- T~iJ-1 = Tlij+l--T1iJ at r ~ ~ -~- 1. 
hr:_ ~ hr~ 

E q u a t i o n  (9 )  c o n t a i n s  t h e  r e l a x a t i o n  p a r a m e t e r  which  has  t h e  v a l u e s  m i n ( A r j ) / 5  and m i n ( A z i ) / 5  
j i 

i n  t h e  e x e c u t i o n  o f  t h e  i n v e r s i o n  sweeps  a l o n g  t h e  r and z d i r e c t i o n s ,  r e s p e c t i v e l y .  

The a b o v e - d e s c r i b e d  n u m e r i c a l  a l g o r i t h m  f o r  t h e  s o l u t i o n  o f  t h e  N a v i e r - S t o k e s  e q u a t i o n s  
in  v o r t i c i t y - s t r e a m  f u n c t i o n  v a r i a b l e s  has  been  i m p l e m e n t e d  in  t h e  p r e s e n t  s t u d y .  A n ) n u n i -  
form 17 • 22 computational grid with the clustering of points near the walls and inlet to 
the duct was used. The convection terms in Eqs. (2), (4), and (5) were represented by asym- 
metric first-order difference relations with so-called "upstream orientation" [i0]. The 
velocity fields were computed in terms of central differences, and the local Nusselt n~mbers 
Nu(z) at the inner surface of the outer cylinder were determined from the relation 

aT 
Nu (z) = - ~ r  ~=R~I (TIc=n+1 -- ~)-~" 

The time step depended on the Reynolds number Re and the step of the spatial grid and ~raried 
between the limits 0.05-0.08. The computations were terminated when the following con~,erg- 
ence test was satisfied: 

[ ~__ ~-~ 
~" ]~0.005, 

where  ~ = (~ ,  $, T1, T2, ~ ) .  The r e l a x a t i o n  t i m e  o f  t h e  s o l u t i o n  o f  t h e  p r o b l e m  i n c r e a s e d  
w i t h  t h e  d u c t  l e n g t h  L, a t t a i n i n g  a v a l u e  t = 100 a t  L = 100. 

The reliability of the formulated algorithm was certified on the basis of published 
data on the hydrodynamics of swirled flow [4] and on fully developed flow in the initi~l 
thermal section of an annular duct [12]. Computations on a z-uniform, r-nonuniform 21 • 
11 grid (21 lengthwise and 11 radially) for Re = i0, R = i, L = 1.2, and K0 = 6 indicated 
exact agreement of the results with the data of [4]; in particular, flow separation frcm 
the inner wall takes place at the inlet to the duct. As the swirl parameter K 0 is increased 
and the flow separation zone occupies an ever-increasing region of the fluid flow. We also 
investigated the variation of the frictional stress on the inner wall of the duct as the 
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swirl parameter K 0 was increased from 1 to 10. We observed good agreement of the results 
with those of similar investigations reported in [4]. Good agreement was also exhibited by 
the dependence of the "critical swirl" on the geometrical parameter R in the interval 0.5- 
4.0 and on the Reynolds number in the range from i0 to 103 . In testing the thermal part of 
the problem, we investigated the initial thermal section of a straight annular duct with 
hydrodynamically stabilized fluid flow and the following boundary conditions (R = i): 

T(r ,  0)=1, T ( R ,  z)=O, --0~.' I : 0 .  
u f  [ r=R+l 

The Nusselt numbers determined from the solution of the problem 

at the inner wall of the duct are in good agreement with the corresponding data of [12], 
deviating at most by 7%. 

The flow and heat transfer in the duct are governed by the following set of parameters: 
the geometrical parameters R, C, and L, the axial and azimuthal velocity profiles U 0 and W 0 
at the inlet to the duct; the Reynolds number Re; the Peclet number Pe, and the Blot number 
Bi; the flow swirl factor K 0 at the inlet to the duct; and the ratios of the thermal conduc- 
tivities % and the thermal conductivities % and the thermal diffusivities a of the duct 
walls and the fluid. In our work the parameters c, K 0, and % were varied in order to ascer- 
tain the nature of their influence on the solution of the problems, the profiles of U 0 and 
W 0 are given above, and the remaining parameters are Re = i00, Pe = 50, L = i00, Bi = i, 
a = i0, and R = I. 

We known [12] that heat transfer in a duct with Cauchy-type boundary conditions takes 
place under isothermal wall conditions in the limit Bi + ~. To test this fact in the pres- 
ence of swirled flow and to confirm the reliability of the results, we carried out a corre- 
sponding investigation with the parameters R = i, K0 = 3, % = c = 0.05, a = i0, and Bi = 100. 
A comparison of the solution obtained here with heat-transfer data in the case of Dirichlet- 
type boundary conditions indicates good agreement between them. It suffices to note that 
the comparison of the Nusselt numbers and the bulk temperatures of the fluid for both prob- 
lem exhibits the greatest differences directly at the inlet to the duct, which are equal to 
3.5% and 1.0%, respectively. Consequently, for Bi = I00 and the values given above for the 
other parameters of the problem, heat transfer actually takes place in the duct with Dirich- 
let boundary conditions. We therefore specify a much smaller value of the Biot number in 
the ensuing investigation, setting it equal to unity. 

The variation of the Nusselt number and the bulk temperature of the fluid along the 
duct for various degrees of swirl is shown in Fig. i. As the swirl parameter K 0 is in- 
creased from 0 to i0, heat transfer within the active zone of the centrifugal forces is 
greatly intensified; farther downstream, this effect decays rapidly until, e.g., at z = 47.5 
the Nusselt number is equal to 2.53 for all three cases. A somewhat similar situation has 
been [13] in a numerical analysis of the influence of flow swirling on the heat transfer in 

Nu 
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2 
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I I I I I 0 W I I I I I 

2 # 6 8 Z 0 10 20 30 4'0 Z 

Fig. i. Variation of the Nusselt number (a) and the bulk 
temperature of the fluid (b) along the duct, c = X = 0.05. 
i) K 0 = 0; 2) 3; 3) i0. 
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Fig. 2. Temperature distribution in dif- 
ferent cross sections of the duct, c = 
= 0.05. i) z = 2.0; 2) i0.0; 3) 21o25. 
Swirl parameter: K 0 = 0 (solid curves) 
and K 0 = i0 (dashed curves). 

a circular tube. In a comparison of the heat fluxes for various degrees of swirl, the au- 
thors of this work showed that in the zone of significant influence of centrifugal fo::ces 
the heat flux in the fluid increases with the parameter K0, but the opposite effect takes 
place farther downstream. 

The temperature distributions in different cross sections of the duct for a swirl fac- 
tor of i0 and without swirl are compared in Fig. 2. We know [4] that for Re = i00 and R = 
1 flow separation from the inner wall of the duct sets in at values of K 0 slightly greater 
than 3. In fact, our numerical experiment confirms the fact that for K0 = 3.3 a weak~ 
small-volume vortex emerges at the inner wall of the duct, and a flow-separation point oc- 
curs at z ~ 0.5. As the swirl factor is increased, the separation zone takes up an ever- 
increasing region of the flow: for K 0 = I0 the dimensions of the vortex formation reJative 
to the thickness of the annular duct are equal to 0.5 and 9.0 in the r and z directio>s, 
respectively, i.e., it has a highly elongated (along z) structure, which has a strong in- 
fluence on the heat transfer in the duct. Indeed, the presence of the flow separatior zone 
in the initial section of the duct for K 0 = i0 causes the warmer upper layers of the ~luid 
to be transported convectively toward the inner wall and causes the temperature minimum to 
shift toward the middle of the duct. The temperature profile is characterized by the pres- 
ence near the wall of a distinct almost-flat interval, which represents the flow core and 
occupies a large part of the annular space. Here the temperature varies only slightly in 
the radial direction from point to point; in return, the temperature profile rises sharply 
upward in the vicinity of the outer wall of the duct. The influence of flow swirling grad- 
ually vanishes with increasing z (see curves 2 and 3), and the temperature minimum shifts 
toward the inner wall of the duct. 

The influence of the other parameter of the problem - the thermal conductivity ~ of 
the duct walls - on the heat transfer in an annular duct is illustrated by Figs. 3 and 4. 
We see (Fig. 3) that when ~ is increased, the bulk temperature of the fluid decreases, and 
the Nusselt number increases within the indicated intervals of z. The formation of the tem- 
perature profiles along the entire length of the duct also depends significantly on th~ 
thermal conductivity I of the walls (Fig. 4). However, this dependence differs in differ- 
ent cross sections of the duct: In the initial cross sections (curves i) the influenc~ of 
the wall material on the temperature profile is felt in the heat-emitting wall itself and 
in the fluid layer immediately contiguous with it; farther downstream (curves 2) this in- 
fluence extends deeper and deeper into the fluid, reaching the inner thermally insulated 
wall, and finally at sufficiently large z the maximum temperature variations with variation 
of the parameter ~ take place at the inner wall (curves 3). 

The influence of the wall thickness on the heat-transfer characteristics in an annular 
duct for Cauchy boundary conditions was investigated for the parameters R = i, ~ = 0.5, K 0 = 
3, and a = 10. The dimensionless thickness of the duct walls was varied in the interval 
0.01-0.I. The investigation showed that the variations of the Nusselt numbers and the bulk 
temperature of the fluid in the above-indicated range of c with the values of all other: 
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Variation of the bulk temperature of the fluid (a) 
and the Nusselt numbers (b) along the length of the duct 
for various values of %, K 0 = 3, c = 0.05. i) % = 0.01; 
2) 0.05; 3) 0.5. 
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Fig. 4. Temperature distribution in 
different cross sections of the duct, 
K0 = 3, c = 0.05. i) z = 2.5; 2) i0.0; 
3) 47.5. Thermal conductivity: % = 0.5 
(dashed curves) and % = 0.01 (solid 
curves ). 

parameters fixed are so slight that they are difficult to portray graphically: in the inlet 
cross sections for c = 0.01 and c = 0.i the Nusselt numbers and the bulk temperatures dif- 
fered by 3% and 14%, respectively. Farther downstream, however, these differences decrease 
rapidly, soon becoming equal to 1% and 5% in the cross section z = 2.0 for the Nusselt num- 
bers and the bulk temperature, respectively. It should also be noted that in the zone of 
large centrifugal forces the bulk temperature of the fluid decreases and the Nusselt num- 
bers increase as the wall thickness is increased. 

Thus, the foregoing numerical analysis shows that the duct walls play a significant 
role in the formulation of the temperature field of the heat-transfer medium. 

NOTATION 

r, z, dimensionless radial and axial coordinates; u, v, m, dimensionless velocity com- 
ponents in axial, radial, and tangential directions; L, dimensionless duct length; c, dimen- 
sionless thickness of duct walls; %1, %2, thermal conductivities of duct walls and fluid, 
respectively; $, ~,dimensionless vorticity and stream function; t, dimensionless time; Bi, 
Biot number. 
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NATURAL THERMAL-CONCENTRATION CONVECTION 

Yu. A. Buevich and V. N. Mankevich UDC 536.25:5,~io135 

Combined thermal and concentration convection is studied for the example of the 
problem of flow and transport near the surface of a horizontal disk. 

Natural convection processes in the field of gravity are determined by the dependence 
of the density of the fluid on the temperature or the concentration of the impurity diffus- 
ing in it and the nonuniformity of the fields of these quantities in the presence of heat 
and mass transfer from surfaces immersed in the fluid. There are a very large number of 
studies of free-convection stimulated by only one of the indicated factors and of the corre- 
sponding convective transport processes (see the review in [I, 2]). A significant number of 
numerical studies of situations in which both factors are important at the same time have 
also been performed. Free convective flow at a horizontal surface is, however, an exception 
in this respect; to analyze this flow it is necessary to study not only the horizontal but 
also the vertical component of the vector equation of conservation of momentum. This makes 
the calculations significantly more complicated, which apparently explains the fact that 
there are only a few isolated papers on the study of such flow. 

Numerical solutions, however, in spite of their importance in obtaining reliable quan- 
titative results, are very cumbersome and, most importantly, they are not very useful for 
constructing a complete physical picture of the process and formulating comparatively simple 
relations describing the process in a wide range of values of the parameters. Attempts, of 
which we are aware, to describe analytically the combined thermal concentration convection 
(made, in particular, in the analysis of the macrokinetics of heterogeneous reactions) are, 
as a rule, based on the use of asymptotic boundary layer methods combined with the prin.ziple 
of superposition, which cannot, in principle, be correct when it is applied to strong con- 
vective heat conduction and diffusion processes [3]. Inaccuracies of a fundamental cha~rac- 
ter, concerning the determination of the effective thicknesses of the hydrodynamic and 
thermal or diffusion layers (see below), which must be corrected, are also encountered in 
the use of a thin boundary layer. Finally, there are experimental indications [4] of the 
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